+0  
 
0
30
1
avatar+760 

In triangle PQR, let X be the intersection of the angle bisector of angle P  with side QR, and let Y be the foot of the perpendicular from Q to side PR. If PQ = 3, PR = 4, and QR = 5,  and  then compute the length of XY.

 Feb 7, 2024
 #1
avatar+129885 
+1

    Q

                    5     

3           X      

                 

    P                 R

               4

 

Y = P

Angle QPR  = 90°

 

sin angle (QRP) = (3/5)

Angle RPX  = 45°

sin angle RPX = 1/sqrt 2

 

Because PX is an angle bisector

 

QP / QX  = PR / RX

 

Let RX = x     QX =  5 - x

 

So

 

3/ (5-x)  =  4 / x

 

3x = 4 (5-x)

 

3x = 20 - 4x

 

7x = 20

 

x = 20/7

 

Law of Sines

 

(YX)  /sin (QRP)  = RX / sin (RPX)

 

YX / (3/5)  = (20/7) / ( 1/sqrt 2)

 

YX  =  (3/5)(20/7) * sqrt 2  =   (60/35)sqrt 2  =  (12/7)sqrt (2) ≈ 2.42

 

 

cool cool cool

 Feb 7, 2024

0 Online Users