We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Triangles

0
484
2

In right triangle ABC, AB=10, AC=6 and BC=8 units. What is the distance from C to the midpoint of segment AB ?

Jun 2, 2018

### 2+0 Answers

#1
+1

In right triangle ABC, AB=10, AC=6 and BC=8 units. What is the distance from C to the midpoint of segment AB ?  Jun 2, 2018
#2
+1

Here's another way

The area of the triangle  is   (1/2) product of the legs  = (1/2) (6) (8)  = 24 units^2

So....calling AB the base....the altitude, h,  is :

24  = (1/2) (10) h

24/5  =  h

Call the altitude, CD

So.....

AD  = sqrt [ AC^2  - CD^2] =

sqrt (6^2  - (24/5)^2)   =

sqrt  (36  - 576/25 ]  =

sqrt [ 324/25]  =

18/5

So....DM  = 5 - 18/5  =  7/5

So  CM

sqrt  ( DM^2  + CD^2 ] =

sqrt [ (7/5)^2  + (24/ 5)^2 ]  =

sqrt [ 49  + 576] / 5 =

sqrt  /5  =

25 / 5   =

5   Jun 2, 2018