+0  
 
+1
98
4
avatar+621 

Given positive integers x and y such that \(x\neq y\) and \(\frac{1}{x} + \frac{1}{y} = \frac{1}{18}\), what is the smallest possible value for \(x+y\)?

mathtoo  Aug 25, 2018
 #3
avatar+91186 
+2

1/x  +  1/y  =  1/18

 

18 [ x + y]   =  xy

 

18  = xy / [ x + y ]

 

Let  x  = 45  and y  = 30 

 

18  = 45 * 30 / [ 75 ]  =   15 * 3 * 15 * 2  / [ 15 * 5]  =  90 / 5

 

So

 

x + y   =  45 + 30   =  75

 

 

cool cool cool

CPhill  Aug 25, 2018
 #4
avatar+621 
+4

Thank you for a nice explanation, CPhill!

mathtoo  Aug 25, 2018

22 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.