+0  
 
0
36
1
avatar

If theta is an angle in quadrant IV such that sine(theta)=-5/6, find secant and tangent of theta

Guest Jun 13, 2017
Sort: 

1+0 Answers

 #1
avatar+3808 
0

We can use the Pythagorean identity to find   cos θ   .

 

 sin2 θ + cos2 θ  =  1         Replace   sin θ   with   -5/6

(-5/6)2  + cos2 θ  =  1

 25/36  + cos2 θ  =  1        Subtract   25/36   from both sides of the equation.

cos2 θ  =  11/36                Cos is positive in Quad. IV , so take the positive square root of both sides.

cos θ    =  √11 / 6

 

sec θ  =  1 / cos θ                   Secant is the reciprocal of cosine.

sec θ  =  1 / ( √11 / 6 )

sec θ  =  6 / √11

 

tan θ  =  sin θ / cos θ               Plug in the values we've found for   sin θ   and   cos θ  .

tan θ  =  ( -5/6 ) / ( √11 / 6 )

tan θ  =  ( -5/6 ) * ( 6 / √11 )

tan θ  =   - 5 / √11

hectictar  Jun 13, 2017
edited by hectictar  Jun 13, 2017

5 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details