+0  
 
0
750
5
avatar+105 

so a triangle is 180 degress. i have a word problem and i can only seem to get as high as 176 degrees. 

Problem 

suppose you have a triangle where A=47(degrees), side b=7.00, and side c=3.59. Use cosine law to find side a, angle B and angle C. 


my answers so far are..
a=5.25
B=99
C=30.34

=176.  

any help would be greatly appricated!!! 

 Jun 18, 2014

Best Answer 

 #1
avatar+26393 
+11

Hi Strider,

$$\alpha = 47\ensuremath{^\circ}\quad b=7\quad c=3.59\\
\mbox{side a?} \quad \mbox{angle } \beta \mbox{ ? and angle }\gamma \mbox{ ?}$$

a:

$$\begin{array}{l}a^2=b^2+c^2-2bc*\cos{(47\ensuremath{^\circ})} \\
a^2=7^2+3.59^2-2*7*3.59*\cos{(47\ensuremath{^\circ})} \\
a^2=27.6108624233\\
\textcolor[rgb]{1,0,0}{a=5.25460392639}
\end{array}$$

$$\mathbf{\beta}:$$

$$\begin{array}{l}b^2=a^2+c^2-2ac*\cos{(\beta) } \\
\cos{(\beta)} = \dfrac{a^2+c^2-b^2}{2ac}\\
\cos{(\beta)} = -0.22532402766\\
\textcolor[rgb]{1,0,0}{\beta=103.021932880\ensuremath{^\circ}}
\end{array}$$

$$\mathbf{\gamma}:$$

$$\begin{array}{l}c^2=a^2+b^2-2ab*\cos{(\gamma) } \\
\cos{(\gamma)} = \dfrac{a^2+b^2-c^2}{2ab}\\
\cos{(\gamma)} = 0.86621674081\\
\textcolor[rgb]{1,0,0}{\gamma=29.9780671201\ensuremath{^\circ}}
\end{array}$$

$$\boxed{\alpha + \beta +\gamma =
47\ensuremath{^\circ}
+103.021932880\ensuremath{^\circ}
+29.9780671201\ensuremath{^\circ}
=180.000000000\ensuremath{^\circ}}$$

 Jun 18, 2014
 #1
avatar+26393 
+11
Best Answer

Hi Strider,

$$\alpha = 47\ensuremath{^\circ}\quad b=7\quad c=3.59\\
\mbox{side a?} \quad \mbox{angle } \beta \mbox{ ? and angle }\gamma \mbox{ ?}$$

a:

$$\begin{array}{l}a^2=b^2+c^2-2bc*\cos{(47\ensuremath{^\circ})} \\
a^2=7^2+3.59^2-2*7*3.59*\cos{(47\ensuremath{^\circ})} \\
a^2=27.6108624233\\
\textcolor[rgb]{1,0,0}{a=5.25460392639}
\end{array}$$

$$\mathbf{\beta}:$$

$$\begin{array}{l}b^2=a^2+c^2-2ac*\cos{(\beta) } \\
\cos{(\beta)} = \dfrac{a^2+c^2-b^2}{2ac}\\
\cos{(\beta)} = -0.22532402766\\
\textcolor[rgb]{1,0,0}{\beta=103.021932880\ensuremath{^\circ}}
\end{array}$$

$$\mathbf{\gamma}:$$

$$\begin{array}{l}c^2=a^2+b^2-2ab*\cos{(\gamma) } \\
\cos{(\gamma)} = \dfrac{a^2+b^2-c^2}{2ab}\\
\cos{(\gamma)} = 0.86621674081\\
\textcolor[rgb]{1,0,0}{\gamma=29.9780671201\ensuremath{^\circ}}
\end{array}$$

$$\boxed{\alpha + \beta +\gamma =
47\ensuremath{^\circ}
+103.021932880\ensuremath{^\circ}
+29.9780671201\ensuremath{^\circ}
=180.000000000\ensuremath{^\circ}}$$

heureka Jun 18, 2014
 #2
avatar+129852 
0

..........delete..........

 Jun 18, 2014
 #3
avatar+105 
0

Is something wrong CPhill? and thanks heureka!

 Jun 18, 2014
 #4
avatar+129852 
0

No, Strider, I was in the middle of working your problem when I noticed that heureka had provided an answer....and as I couldn't top "perfection," there was no need to try to duplicate it, either!!.....

 

 Jun 18, 2014
 #5
avatar+105 
0

Ah, alright 

 Jun 18, 2014

1 Online Users

avatar