(sin x * tan x) / (1 - cos x) - 1 = sec x
Show that left equals right.
sin(x)⋅tan(x)1−cos(x)−1?=sec(x)|sec(x)=1cos(x)?=1cos(x)sin(x)⋅tan(x)1−cos(x)−1?=1cos(x)|tan(x)=sin(x)cos(x)sin(x)⋅sin(x)cos(x)1−cos(x)−1?=1cos(x)sin2(x)cos(x)⋅[1−cos(x)]−1?=1cos(x)sin2(x)−cos(x)⋅[1−cos(x)]cos(x)⋅[1−cos(x)]?=1cos(x)sin2(x)−cos(x)+cos2(x)cos(x)⋅[1−cos(x)]?=1cos(x)|sin(x)2+cos2(x)=1[1−cos(x)]cos(x)⋅[1−cos(x)]?=1cos(x)1cos(x)=1cos(x)
(sin x * tan x) / (1 - cos x) - 1 = sec x
Show that left equals right.
sin(x)⋅tan(x)1−cos(x)−1?=sec(x)|sec(x)=1cos(x)?=1cos(x)sin(x)⋅tan(x)1−cos(x)−1?=1cos(x)|tan(x)=sin(x)cos(x)sin(x)⋅sin(x)cos(x)1−cos(x)−1?=1cos(x)sin2(x)cos(x)⋅[1−cos(x)]−1?=1cos(x)sin2(x)−cos(x)⋅[1−cos(x)]cos(x)⋅[1−cos(x)]?=1cos(x)sin2(x)−cos(x)+cos2(x)cos(x)⋅[1−cos(x)]?=1cos(x)|sin(x)2+cos2(x)=1[1−cos(x)]cos(x)⋅[1−cos(x)]?=1cos(x)1cos(x)=1cos(x)