Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
602
1
avatar+466 

(sin x * tan x) / (1 - cos x) - 1 = sec x

Show that left equals right.

 Feb 29, 2016

Best Answer 

 #1
avatar+26396 
+10

(sin x * tan x) / (1 - cos x) - 1 = sec x
Show that left equals right.

 

sin(x)tan(x)1cos(x)1?=sec(x)|sec(x)=1cos(x)?=1cos(x)sin(x)tan(x)1cos(x)1?=1cos(x)|tan(x)=sin(x)cos(x)sin(x)sin(x)cos(x)1cos(x)1?=1cos(x)sin2(x)cos(x)[1cos(x)]1?=1cos(x)sin2(x)cos(x)[1cos(x)]cos(x)[1cos(x)]?=1cos(x)sin2(x)cos(x)+cos2(x)cos(x)[1cos(x)]?=1cos(x)|sin(x)2+cos2(x)=1[1cos(x)]cos(x)[1cos(x)]?=1cos(x)1cos(x)=1cos(x)

 

laugh

 Mar 1, 2016
 #1
avatar+26396 
+10
Best Answer

(sin x * tan x) / (1 - cos x) - 1 = sec x
Show that left equals right.

 

sin(x)tan(x)1cos(x)1?=sec(x)|sec(x)=1cos(x)?=1cos(x)sin(x)tan(x)1cos(x)1?=1cos(x)|tan(x)=sin(x)cos(x)sin(x)sin(x)cos(x)1cos(x)1?=1cos(x)sin2(x)cos(x)[1cos(x)]1?=1cos(x)sin2(x)cos(x)[1cos(x)]cos(x)[1cos(x)]?=1cos(x)sin2(x)cos(x)+cos2(x)cos(x)[1cos(x)]?=1cos(x)|sin(x)2+cos2(x)=1[1cos(x)]cos(x)[1cos(x)]?=1cos(x)1cos(x)=1cos(x)

 

laugh

heureka Mar 1, 2016

1 Online Users