+0  
 
0
89
2
avatar

How would one solve this? 

 

[(1+tan(x))/sin(x)]-sec(x)=csc(x) 

Guest May 25, 2018
 #1
avatar
+1

Verify the following identity:

(tan(x) + 1)/sin(x) - sec(x) = csc(x)

 

Put (tan(x) + 1)/sin(x) - sec(x) over the common denominator sin(x): (tan(x) + 1)/sin(x) - sec(x) = (1 - sec(x) sin(x) + tan(x))/sin(x):

(1 - sec(x) sin(x) + tan(x))/sin(x) = ^?csc(x)

 

Multiply both sides by sin(x):

1 - sec(x) sin(x) + tan(x) = ^?csc(x) sin(x)

 

Write cosecant as 1/sine, secant as 1/cosine and tangent as sine/cosine:

1 - 1/cos(x) sin(x) + sin(x)/cos(x) = ^?1/sin(x) sin(x)

 

1 - (1/cos(x)) sin(x) + (sin(x)/cos(x)) = 1:

1 = ^?(1/sin(x)) sin(x)

 

(1/sin(x)) sin(x) = 1:

1 = ^?1

 

The left hand side and right hand side are identical:

(identity has been verified)

Guest May 25, 2018
 #2
avatar+87572 
+1

(1 + tan x  )  / sin x  - sec  x = csc x

 

(1 + tan x) / sin x  -    1 / cos x

 

(1 + sin x / cos x) /  sin x  - 1 / cos x

 

1/sin x + sinx / [ cos x sin x]  - 1/cos x

 

1 / sin x  + sin x / [ cos x sin x ]  - sin x / [ sinx cos x]

 

1 / sin x  + sin x [ sin x cos x] -  sin x / [ sin x cos x ]

 

1 / sin x   =    csc x

 

 

cool cool cool

CPhill  May 25, 2018

21 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.