+0

# ​ Trig Is Phun

0
41
6
+85

Hey guys im having a little trouble with trig and I would really appriciate it if someone would help me out, just answer any of them that you can help me with thanks!

JoeTheCat  Dec 8, 2017
Sort:

#1
+79741
+2

4. sin^4(x) + sin^2(x) [cos^2(x)]  =

sin^2(x)  [   sin^2(x)  + cos^2(x) ]  =

sin^2(x) * 1

sin^2 (x)

5.  (csc x + 1) (csc x - 1)  =

csc^2 x  - 1  =

Remember that 1 + cot^2 (x) = csc^2(x)...so......subtract 1 from both sides

cot^2 x

6.    cos^2(x)  / [ 1 - sin (x) ]

Multiply top/bottom by 1 + sin (x)

cos^2(x) * (1 + sin (x)) /  [ ( 1 - sin(x))( 1 + sin (x) ]

cos^2(x)  (1 + sin (x)  / ( 1 - sin^2(x) ]

cos^2(x) (1 + sin (x) ]  / cos^2(x)

(1 + sin (x)

CPhill  Dec 8, 2017
#2
+85
0

Thank you so much Cphill! Greatly appreciated!

JoeTheCat  Dec 8, 2017
#3
+79741
0

2.  [  sec^2x  + csc^2x]

__________________        =

csc^2 x  [ 1 + tan^2 x]

sec^2 x                                              csc^2 x

_________________       +              ______________       =

csc^2x [ sec^2x]                           csc^2 x [ sec^2 x]

1                     +          1

___                          ______        =

csc^2 x                    sec^2 x

sin^2 x  +  cos^2 x   =

1

CPhill  Dec 8, 2017
#4
+79741
0

7.      1 + cos x       +      sin x

________           ______                    get a common denominator

sinx                 1 + cos x

[ 1 + cosx ] ^2 +  sin^2x

---------------------------------

sin x  [ 1 + cos x]

[ 1 + 2cosx + cos^2x] + [ 1 - cos^2 (x) ]

_________________________________

sin (x)  [1 + cos (x) ]

[    2  + 2cos^2(x) ]

_______________

sin x [ 1 + cos (x) ]

2 [  1 + cos (x) ]

______________

sin x  [ 1 + cos(x) ]

2

___            =       2csc x

sin x

I used  x instead of theta....still the same  !!!!

CPhill  Dec 8, 2017
#5
+79741
0

8.   tan^4x  + 2tan^2 x  +  1        factor as

[ tan^2 x + 1 ]^2   =

[sec^2( x) ]^2  =

sec^4 (x)

CPhill  Dec 8, 2017
#6
+79741
0

9.   sin (105)  =

sin (60+ 45)  =

sin60cos45 + sin45cos60  =

(√3/2) (√2/2)  + (√2/2)(1/2)  =

[ √6  +  √ 2 )  /  4

tan (15)  =   tan (45 - 30)  =

[ tan (45)  -  tan (30) ]            [  1  -  √3/3 ]                   3 - √ 3

_________________     =    ___________      =        _______

1  + tan (45)tan(30)                [ 1 + 1 (√3/3) ]               3  + √3

10.    sin (42°)cos(38°)  - cos(42°)sin(38°)  =

sin ( 42 - 38)   =

sin (4°)

CPhill  Dec 8, 2017

### 21 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details