We know \(AD=BA=3+2=5\)
\(AQ=AP= \sqrt{AD^2+DQ^2}=\sqrt{34}\)
\(\triangle AQD \cong \triangle ABP\) by SSS congruence
Thus:
\(\angle QAD=\angle PAB\) (by congruence above)
And \(\angle PAQ=90-2\angle PAB\)
Let \(\angle PAB =x\)and \(\angle PAQ=90-2x\) (for simplicity)
\(\sin(90-2x)=\cos(2x)=1-2\sin^2x\)
We know \(\sin x=\frac {PB}{AP}=\frac{3}{\sqrt{34}}\)
so finally:
\(\sin {\angle PAQ}=\boxed{\frac{8}{17}}\)
ggwp
We know \(AD=BA=3+2=5\)
\(AQ=AP= \sqrt{AD^2+DQ^2}=\sqrt{34}\)
\(\triangle AQD \cong \triangle ABP\) by SSS congruence
Thus:
\(\angle QAD=\angle PAB\) (by congruence above)
And \(\angle PAQ=90-2\angle PAB\)
Let \(\angle PAB =x\)and \(\angle PAQ=90-2x\) (for simplicity)
\(\sin(90-2x)=\cos(2x)=1-2\sin^2x\)
We know \(\sin x=\frac {PB}{AP}=\frac{3}{\sqrt{34}}\)
so finally:
\(\sin {\angle PAQ}=\boxed{\frac{8}{17}}\)
ggwp