We know AD=BA=3+2=5
AQ=AP=√AD2+DQ2=√34
△AQD≅△ABP by SSS congruence
Thus:
∠QAD=∠PAB (by congruence above)
And ∠PAQ=90−2∠PAB
Let ∠PAB=xand ∠PAQ=90−2x (for simplicity)
sin(90−2x)=cos(2x)=1−2sin2x
We know sinx=PBAP=3√34
so finally:
sin∠PAQ=817
ggwp
We know AD=BA=3+2=5
AQ=AP=√AD2+DQ2=√34
△AQD≅△ABP by SSS congruence
Thus:
∠QAD=∠PAB (by congruence above)
And ∠PAQ=90−2∠PAB
Let ∠PAB=xand ∠PAQ=90−2x (for simplicity)
sin(90−2x)=cos(2x)=1−2sin2x
We know sinx=PBAP=3√34
so finally:
sin∠PAQ=817
ggwp