+0  
 
+1
241
1
avatar+5 

If cos A = -4/5 for angle A in Quadrant II, find sin 2A

Harmmyy  Jun 6, 2017

Best Answer 

 #1
avatar+7155 
+1

sin( 2A )  =  2 sin( A ) cos( A )

 

We can find   sin( A )   using the Pythagorean identity.

 

sin2 A  +  cos2 A   =   1

sin2 A  +  (-4/5)2   =   1

sin2 A  +  (16/25)  =   1

sin2 A   =   1 - 16/25

sin2 A   =   9/25                     Take the square root of both sides.

sin A = 3/5                             Since sin is positive in Quadrant II, we only take the positive root.

 

Now we can find   sin( 2A )   using the double-angle identity.

 

sin( 2A )  =  2 sin( A ) cos( A )

sin( 2A )  =  2 (3/5) (-4/5)

sin( 2A )  =  -24/25

hectictar  Jun 6, 2017
 #1
avatar+7155 
+1
Best Answer

sin( 2A )  =  2 sin( A ) cos( A )

 

We can find   sin( A )   using the Pythagorean identity.

 

sin2 A  +  cos2 A   =   1

sin2 A  +  (-4/5)2   =   1

sin2 A  +  (16/25)  =   1

sin2 A   =   1 - 16/25

sin2 A   =   9/25                     Take the square root of both sides.

sin A = 3/5                             Since sin is positive in Quadrant II, we only take the positive root.

 

Now we can find   sin( 2A )   using the double-angle identity.

 

sin( 2A )  =  2 sin( A ) cos( A )

sin( 2A )  =  2 (3/5) (-4/5)

sin( 2A )  =  -24/25

hectictar  Jun 6, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.