+0  
 
0
114
1
avatar

If \(\dfrac{\sin^4 x}2 + \dfrac{\cos^4 x}3 = \dfrac15\), find \(\tan^2 x\)

 Jul 7, 2020
 #1
avatar+10600 
+1

If \(\dfrac{\sin^4 x}2 + \dfrac{\cos^4 x}3 = \dfrac15 \) ,  find  \(tan^2x.\)

 

Hello Guest!

 

\(\frac{1}{2}(sin^2x)^2+\frac{1}{3}(cos^2x)^2=\frac{1}{5}\\ \frac{1}{2}(sin^2x)^2+\frac{1}{3}(1-sin^2x)^2=\frac{1}{5}\)

\(sin^2x =u\)

\(\frac{1}{2}u^2+\frac{1}{3}(1-u)^2=\frac{1}{5}\\ \frac{1}{2}u^2+\frac{1}{3}(1-2u+u^2)=\frac{1}{5}\\ \frac{1}{2}u^2+\frac{1}{3}-\frac{2}{3}u+\frac{1}{3}u^2=\frac{1}{5}\)

\(\frac{1}{2\cdot 3\cdot 5}\cdot (15u^2+10-20u+10u^2)=\frac{6}{2\cdot 3\cdot 5}\)

\(25u^2-20u+4=0\)

\(u = {20 \pm \sqrt{20^2-4\cdot 25\cdot 4} \over 2\cdot 25}\\ u=\frac{1}{50}\cdot (20\pm 0)\\ \color{blue}u=0.4\)

 

\(sin^2x=\frac{tan^2x}{1+tan^2x}\)

\(tan^2x=v\)

\(\frac{v}{1+v}=u\\ v=u+uv\\ v-uv=u\\ \color{blue}v=\frac{u}{1-u} \)

 

\(tan^2x=\frac{0.4}{1-0.4}\)

 

\(tan^2x=\frac{2}{3}\)

Thanks heureka!

laugh  !

 Jul 7, 2020
edited by asinus  Jul 7, 2020
edited by asinus  Jul 7, 2020
edited by asinus  Jul 7, 2020
edited by asinus  Jul 7, 2020

30 Online Users

avatar
avatar
avatar
avatar