+0  
 
0
77
1
avatar

If \(\dfrac{\sin^4 x}2 + \dfrac{\cos^4 x}3 = \dfrac15\), find \(\tan^2 x\)

 Jul 7, 2020
 #1
avatar+10028 
+1

If \(\dfrac{\sin^4 x}2 + \dfrac{\cos^4 x}3 = \dfrac15 \) ,  find  \(tan^2x.\)

 

Hello Guest!

 

\(\frac{1}{2}(sin^2x)^2+\frac{1}{3}(cos^2x)^2=\frac{1}{5}\\ \frac{1}{2}(sin^2x)^2+\frac{1}{3}(1-sin^2x)^2=\frac{1}{5}\)

\(sin^2x =u\)

\(\frac{1}{2}u^2+\frac{1}{3}(1-u)^2=\frac{1}{5}\\ \frac{1}{2}u^2+\frac{1}{3}(1-2u+u^2)=\frac{1}{5}\\ \frac{1}{2}u^2+\frac{1}{3}-\frac{2}{3}u+\frac{1}{3}u^2=\frac{1}{5}\)

\(\frac{1}{2\cdot 3\cdot 5}\cdot (15u^2+10-20u+10u^2)=\frac{6}{2\cdot 3\cdot 5}\)

\(25u^2-20u+4=0\)

\(u = {20 \pm \sqrt{20^2-4\cdot 25\cdot 4} \over 2\cdot 25}\\ u=\frac{1}{50}\cdot (20\pm 0)\\ \color{blue}u=0.4\)

 

\(sin^2x=\frac{tan^2x}{1+tan^2x}\)

\(tan^2x=v\)

\(\frac{v}{1+v}=u\\ v=u+uv\\ v-uv=u\\ \color{blue}v=\frac{u}{1-u} \)

 

\(tan^2x=\frac{0.4}{1-0.4}\)

 

\(tan^2x=\frac{2}{3}\)

Thanks heureka!

laugh  !

 Jul 7, 2020
edited by asinus  Jul 7, 2020
edited by asinus  Jul 7, 2020
edited by asinus  Jul 7, 2020
edited by asinus  Jul 7, 2020

21 Online Users

avatar