+0  
 
+5
57
1
avatar

tan(2cos^−1(x/3)) simplified?

Guest Feb 27, 2017
Sort: 

1+0 Answers

 #1
avatar+18624 
+5

simplify tan[ 2*arccos(x/3) ]

 

\(\begin{array}{|rcll|} \hline \cos(\varphi) &=& \frac{x}{3} \\ \varphi &=& \arccos\left(\frac{x}{3} \right) \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \tan(2 \varphi ) &=& \frac{\sin(2 \varphi)}{\cos(2 \varphi)} \quad & | \quad \sin(2 \varphi) = 2 \sin(\varphi)\cos(\varphi) \quad \cos(2\ \varphi) = 2 \cos^2(\varphi)-1 \\ \tan(2 \varphi ) &=& \frac{2 \sin(\varphi)\cos(\varphi)}{2 \cos^2(\varphi)-1} \quad & | \quad \cos(\varphi) = \frac{x}{3} \\ \tan(2 \varphi ) &=& \frac{2 \sin(\varphi)\frac{x}{3}}{2 (\frac{x}{3})^2-1} \quad & | \quad \sin(\varphi) = \sin(\arccos\left(\frac{x}{3} \right)) \\ \tan(2 \varphi ) &=& \frac{2 \sin(\arccos\left(\frac{x}{3} \right))\frac{x}{3}}{2 (\frac{x}{3})^2-1} \\ \hline \end{array} \)

 

 

\(\begin{array}{|rcll|} \hline \tan(2 \varphi ) &=& \frac{2 \sin(\arccos\left(\frac{x}{3} \right))\frac{x}{3}}{2 (\frac{x}{3})^2-1} \quad & | \quad \sin(\arccos\left(\frac{x}{3} \right)) = \sqrt{1-\left(\dfrac{x}{3}\right)^2} \\ \tan(2 \varphi ) &=& \frac{2 \sqrt{1-\left(\frac{x}{3}\right)^2}\frac{x}{3}}{2 (\frac{x}{3})^2-1} \\ \tan(2 \varphi ) &=& \frac{2 \sqrt{\frac{9-x^2}{9}}\frac{x}{3}}{ \frac{2x^2-9}{9}} \\ \tan(2 \varphi ) &=& \frac{2 \frac{\sqrt{9-x^2}}{3}\frac{x}{3}}{ \frac{2x^2-9}{9}} \\ \tan(2 \varphi ) &=& \frac{2 \frac{\sqrt{9-x^2}}{9}x}{ \frac{2x^2-9}{9}} \\ \tan(2 \varphi ) &=& \frac{2 \sqrt{9-x^2} x}{ 2x^2-9 } \quad & | \quad \sqrt{9-x^2} = \sqrt{3-x}\cdot\sqrt{3+x}\\ \tan(2 \varphi ) &=& \frac{2 \sqrt{3-x}\cdot x \cdot \sqrt{3+x}}{ 2x^2-9 } \\ \mathbf{\tan(2 \arccos\left(\frac{x}{3} \right) ) }& \mathbf{=} & \mathbf{\frac{2 \sqrt{3-x}\cdot x \cdot \sqrt{3+x}}{ 2x^2-9 } } \\ \hline \end{array}\)

 

laugh

heureka  Feb 27, 2017

9 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details