+0  
 
0
1
1
avatar+585 

Let A, B, and C be the angles of a triangle.  Given that \tan \frac{A}{2} = \frac{1}{4} and \tan \frac{B}{2} = \frac{1}{3}, find \tan \frac{C}{2}.

 
 Jan 1, 2025
 #1
avatar+130060 
+1

tan A =  2 sin (A/2)cos (A/2)  = 2 * 1/sqrt 17 * 4/sqrt 17 =  8/17  =  24 / 51

tan B = 2 sin (B/2) cos (B/2) = 2 * 1/sqrt 10 * 3/sqrt 10 =  6/10 = 3/5  = 24/ 40

 

 

AB = ( 51 + 40) =  91

 

AC =  sqrt [ 24^2 + 51^2] = 3sqrt (353)

 

sin B =  24/ [8 sqrt (34)] = 3 /sqrt 34

 

Law of Sines

 

sin C  / AB =  sin B / AC

 

sin C /  91 = [3/sqrt 34] / [ 3sqrt (353)]

 

sin C  = 91 / sqrt [ 34* 353] =  91 / sqrt [12002]

 

cos C  =  sqrt [ 12002 - 91^2  ] / sqrt [ 12002[  =  61/ sqrt [12002]

 

tan C =  91/61

 

arctan (91/61)  = C =  56.16°   or   180 - 56.16  = 123.84°

 

tan (C/2)  =  tan (123.84 / 2) ≈  1.8744

 

 

cool cool cool

 Jan 2, 2025

3 Online Users

avatar
avatar