+0  
 
0
47
2
avatar

I need help with a trig problem, please.

 

Simplify.

 

(csc(x)-cot(x))*(sec(x)+1)

Guest Mar 12, 2017
edited by Guest  Mar 12, 2017

Best Answer 

 #1
avatar+10613 
+5

(1/sin - cos/sin)(1/cos +1)

(1-cos)/sin (1/cos +1)

(1-cos)/cos sin + (1-cos)/sin

(1-cos)/cos sin + (1-cos)(cos)/cos sin

{(1-cos) + (cos- cos^2) ] /  cos sin

(1-cos^2)/(cos sin)

sin^2 /(cos sin

sin/cos

tan(x)

ElectricPavlov  Mar 12, 2017
Sort: 

2+0 Answers

 #1
avatar+10613 
+5
Best Answer

(1/sin - cos/sin)(1/cos +1)

(1-cos)/sin (1/cos +1)

(1-cos)/cos sin + (1-cos)/sin

(1-cos)/cos sin + (1-cos)(cos)/cos sin

{(1-cos) + (cos- cos^2) ] /  cos sin

(1-cos^2)/(cos sin)

sin^2 /(cos sin

sin/cos

tan(x)

ElectricPavlov  Mar 12, 2017
 #2
avatar+4154 
+6

\((\csc (x) - \cot (x))(\sec (x)+1) \\~\\ = (\frac{1}{\sin (x)}-\frac{\cos (x)}{\sin (x)})(\frac{1}{\cos (x)}+1) \\~\\ = (\frac{1-\cos (x)}{\sin (x)})(\frac{1}{\cos (x)}+\frac{\cos (x)}{\cos (x)}) \\~\\ = (\frac{1-\cos (x)}{\sin (x)})(\frac{1+\cos (x)}{\cos (x)}) \\~\\ = \frac{1 + \cos (x) - \cos (x) - \cos^2 (x)}{\sin (x) \cos (x)} \\~\\ = \frac{1 - \cos^2 (x)}{\sin (x) \cos (x)} \\~\\ = \frac{\sin^2 (x)}{\sin (x) \cos (x)} \\~\\ = \frac{\sin (x)}{ \cos (x)} \\~\\ = \tan (x)\)

laugh

hectictar  Mar 12, 2017

16 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details