+0  
 
0
1
1
avatar+585 

In triangle ABC, \cos A=\sqrt{\frac{2}{5}} and \cos B= 1/2. Find \cos C.

 
 Jan 1, 2025
 #1
avatar+130060 
+1

cos A = 2/5     →  tan A =  sqrt 21 / 2 →  sqrt (63) / sqrt (12)

cos B = 1/2    →   tan B =  sqrt 3 / 1  →   sqrt (63) / sqrt (21)

 

AC =  sqrt (63 +12)  = sqrt (75)

 

Law of Sines

 

sin C / AB =  sin B / AC

 

sin C / ( sqrt (12) +sqrt (21))  =  (sqrt (3) / 2) / sqrt (75)

 

sin C / ( sqrt (12) + sqrt (21))  =  1 / [ 2 sqrt 25 ]

 

sin C / (sqrt (12) + sqrt (21)) = 1/10

 

sin C =  [ sqrt (12) + sqrt (21) ] /10

 

cos C  =   sqrt [ 10^2 - ( sqrt 12 + sqrt 21)^2] /10   =

 

sqrt [ 100 - ( 12 + 21 + 2sqrt (12)sqrt (21) ] /10   =

 

sqrt [ 67 - 12sqrt 7] /10

 

cool cool cool

 Jan 2, 2025

3 Online Users

avatar
avatar
avatar