(2 cot x)/(tan 2x) = csc2 x - 2
I think we all know the drill... show that the left side equals the right
(2 cot x)/(tan 2x) = [tan 2x = sin2x / cos 2x ]
2[cosx/sinx] / [sin2x / cos2x] =
[2*cosx*cos2x] / [sinx * sin2x] =
[2*cosx*cos2x ] / sinx * 2sinxcosx] = [ 2cosx cancels on top/bottom]
[cos2x]/ [ sin^2x] = [ use 1 - 2sin^2 x for cos2x ]
[1 - 2sin^2x] / [ sin^2x] =
1/sin^2x - 2sin^2x / sin^2x =
csc^2x - 2
Love these, don't you Shades??? LOL!!!!
(2 cot x)/(tan 2x) = [tan 2x = sin2x / cos 2x ]
2[cosx/sinx] / [sin2x / cos2x] =
[2*cosx*cos2x] / [sinx * sin2x] =
[2*cosx*cos2x ] / sinx * 2sinxcosx] = [ 2cosx cancels on top/bottom]
[cos2x]/ [ sin^2x] = [ use 1 - 2sin^2 x for cos2x ]
[1 - 2sin^2x] / [ sin^2x] =
1/sin^2x - 2sin^2x / sin^2x =
csc^2x - 2
Love these, don't you Shades??? LOL!!!!