+0  
 
0
941
3
avatar+5265 

Right Triangle ABC is graphed on the coordinate plane and has vertices A(-1, 3), B(0, 5), and C(4, 3). What is the measure of angle C to the nearest degree?

 

27°

29°

H 32°

J 43°

 

Please hurry! Thanks!

 Mar 10, 2016

Best Answer 

 #1
avatar+129852 
+10

Let's get the lengths of the sides of the triangle, first. Then, we can use the Law of Sines to find C.

 

A(-1, 3), B(0, 5), and C(4, 3)

 

BC =.sqrt [ (4 - 0)^2 + (5-3)^2 ]  = sqrtt [16 + 4]  = sqrt(20)

AC = sqrt [ (-1- 4)^2 + ( 3 - 3)^2]=  sqrt [ 25]  = 5

AB =sqrt [ (-1 - 0)^2  + ( 5 -3)^2 ]  = sqrt (5)

 

So....AC is the hypotenuse.......and we're looking for C....so....using the Law of Sines

 

sin (90) / AC  = sin C / sqrt(5)

 

1/5  = sinC / sqrt(5)

 

sinC = sqrt(5) / 5  =  1 / sqrt(5)

 

And using the sine inverse

 

arcsin ( 1 / sqrt(5)   = C  = about 26.57°   = 27°  [rounded]

 

 

cool cool cool

 Mar 10, 2016
 #1
avatar+129852 
+10
Best Answer

Let's get the lengths of the sides of the triangle, first. Then, we can use the Law of Sines to find C.

 

A(-1, 3), B(0, 5), and C(4, 3)

 

BC =.sqrt [ (4 - 0)^2 + (5-3)^2 ]  = sqrtt [16 + 4]  = sqrt(20)

AC = sqrt [ (-1- 4)^2 + ( 3 - 3)^2]=  sqrt [ 25]  = 5

AB =sqrt [ (-1 - 0)^2  + ( 5 -3)^2 ]  = sqrt (5)

 

So....AC is the hypotenuse.......and we're looking for C....so....using the Law of Sines

 

sin (90) / AC  = sin C / sqrt(5)

 

1/5  = sinC / sqrt(5)

 

sinC = sqrt(5) / 5  =  1 / sqrt(5)

 

And using the sine inverse

 

arcsin ( 1 / sqrt(5)   = C  = about 26.57°   = 27°  [rounded]

 

 

cool cool cool

CPhill Mar 10, 2016
 #2
avatar+5265 
0

Thank you so much!

rarinstraw1195  Mar 10, 2016
 #3
avatar+129852 
0

No prob, rarinstraw......!!!

 

 

cool cool cool

 Mar 10, 2016

6 Online Users

avatar
avatar