+0  
 
0
564
1
avatar

Prove: Tanθ ( 1 + cos2θ ) = Sin2θ

 Jun 20, 2014

Best Answer 

 #1
avatar+118723 
+5

$$\begin{array}{rll}
LHS&=&tan\theta (1+cos2\theta)\\\\
&=&\frac{sin\theta}{cos\theta}(1+cos^2\theta -sin^2\theta)\\\\
&=& \frac{sin\theta}{cos\theta}(cos^2\theta+cos^2\theta)\\\\
&=& \frac{sin\theta}{cos\theta}(2cos^2\theta)\\\\
&=& 2sin\theta cos\theta\\\\
&=& sin2\theta\\\\
&=& RHS
\end{array}$$

.
 Jun 20, 2014
 #1
avatar+118723 
+5
Best Answer

$$\begin{array}{rll}
LHS&=&tan\theta (1+cos2\theta)\\\\
&=&\frac{sin\theta}{cos\theta}(1+cos^2\theta -sin^2\theta)\\\\
&=& \frac{sin\theta}{cos\theta}(cos^2\theta+cos^2\theta)\\\\
&=& \frac{sin\theta}{cos\theta}(2cos^2\theta)\\\\
&=& 2sin\theta cos\theta\\\\
&=& sin2\theta\\\\
&=& RHS
\end{array}$$

Melody Jun 20, 2014

0 Online Users