what is 40 in exponential form
\(\begin{array}{rcl} 40^1 &=& e^x \qquad | \qquad \ln{()}\\ \ln{(40^1)}&=& \ln{(e^x)}\\ 1\cdot \ln{(40)}&=& x \cdot \ln{(e)} \qquad | \qquad \ln{(e)} = 1\\ \mathbf{ \ln{(40)} }& \mathbf{=}& \mathbf{x} \\ 40^1 &=& e^{ \ln{(40)}}\\ \mathbf{ 40^1 }&\mathbf{ = }& \mathbf{ e^{ 3.68887945411 } }\\ \end{array}\)
what is 40 in exponential form
\(\begin{array}{rcl} 40^1 &=& e^x \qquad | \qquad \ln{()}\\ \ln{(40^1)}&=& \ln{(e^x)}\\ 1\cdot \ln{(40)}&=& x \cdot \ln{(e)} \qquad | \qquad \ln{(e)} = 1\\ \mathbf{ \ln{(40)} }& \mathbf{=}& \mathbf{x} \\ 40^1 &=& e^{ \ln{(40)}}\\ \mathbf{ 40^1 }&\mathbf{ = }& \mathbf{ e^{ 3.68887945411 } }\\ \end{array}\)