\(2x\times6x\times101+1=12\times x102x\times333+516-25\)
\(12x{}^{2}\times101+1=12\times x102x\times333+516-25\)
\(1212x{}^{2}+1=12\times x102x\times333+516-25\)
\(1212x{}^{2}+1=12\times 102x{}^{2}\times333+516-25\)
\(1212x{}^{2}+1=1224x{}^{2}\times333+516-25\)
\(1212x{}^{2}+1=40592x{}^{2}+516-25\)
\(1212x{}^{2}+1=40592x{}^{2}+491\)
\(1=39380x{}^{2}+491\)
\(-490=39380x{}^{2}\)
\(\frac{-490}{39380}=x{}^{2}\)
\(-\frac{490}{39380}=x{}^{2}\)
\(x{}^{2}=-\frac{490}{39380}\)
\(x{}^{2}=-\frac{49}{3938}\)
\(x≈ 0.1115475880428244i\) or \(x≈-0.1115475880428244i\)
Could u put spaces in between each function so I may decipher it better plz...
\(2x\times6x\times101+1=12\times x102x\times333+516-25\)
\(12x{}^{2}\times101+1=12\times x102x\times333+516-25\)
\(1212x{}^{2}+1=12\times x102x\times333+516-25\)
\(1212x{}^{2}+1=12\times 102x{}^{2}\times333+516-25\)
\(1212x{}^{2}+1=1224x{}^{2}\times333+516-25\)
\(1212x{}^{2}+1=40592x{}^{2}+516-25\)
\(1212x{}^{2}+1=40592x{}^{2}+491\)
\(1=39380x{}^{2}+491\)
\(-490=39380x{}^{2}\)
\(\frac{-490}{39380}=x{}^{2}\)
\(-\frac{490}{39380}=x{}^{2}\)
\(x{}^{2}=-\frac{490}{39380}\)
\(x{}^{2}=-\frac{49}{3938}\)
\(x≈ 0.1115475880428244i\) or \(x≈-0.1115475880428244i\)