+0  
 
0
47
2
avatar+1364 

Let us have four distinct collinear points  A,B,C  and D on the Cartesian plane. The point \(C\)  is such that \(\dfrac{AB}{CB} = \dfrac{1}{2}\) and the point \(D\) is such that \(\dfrac{DA}{BA} = 3\) and  \(\dfrac{DB}{BA} = 2.\) If  \(C = (0, 4),\)\(D = (4, 0),\) and \(A = (x, y),\) what is the value of \(2x+y\) ?

tertre  Dec 29, 2017
Sort: 

2+0 Answers

 #1
avatar+502 
0

I think if I answer any more math questions my mind will b**w up cuz its mixed with chemistry and maths and that a very bad mixture

Rauhan  Dec 29, 2017
 #2
avatar+80973 
+1

AB / CB   =  1/2  ⇒   2AB  = BC

 

AD/AB = 3   ⇒ 3AB  =  AD

 

BD/ AB  =  2  ⇒  2AB  = BD

 

So  this implies that  BD  =  BC

 

So....B  must  be the midpoint of  C and D  =   (2,2)

 

2AB  =  BC   ⇒  AB  =  BC/2

3AB  =  AD  ⇒  AB  =  AD/3

 

So logic dictates that A  must be the midpoint of BC  =  (1,3)

 

So....AB  =   sqrt [ (1^2 + 1^2) ]  =  sqrt (2)

 

And  AD  =  sqrt (3^2  + 3^2)  = sqrt (18)   =  3sqrt (2)  =  3AB

 

Proof 

AB   =  sqrt (2)

CB  =  sqrt [ 2^2  + (4 -2)^2]  =  sqrt (4 + 4)  =    sqrt (8)  = 2sqrt (2)

So  AB /CB  =  sqrt (2)/ 2sqrt (2)  =  1/2

 

And

AD  =  3sqrt(2)

BA  =  sqrt(2)

So  DA /BA  =   3sqrt(2)/ sqrt (3)  = 3

 

And

DB  = sqrt [ ( 4 - 2)^2  + 2^2 ]  =  sqrt (2^2 + 2^2 )  =  sqrt (8)  = 2sqrt(2)

BA  =  sqrt(2)

So DB / BA  =   2sqrt(2)/ sqrt (2)  =  2 

 

So  A  =  (1 ,3)

 

And   2x + y   =   2(1) + 3     =      5

 

 

cool cool cool

CPhill  Dec 29, 2017
edited by CPhill  Dec 29, 2017
edited by CPhill  Dec 29, 2017

19 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details