(2-(sec^2)(x))/((sec^2)(x))
You have brackets in nonsense places. So no calc will accept it like that !
Anyway
You could just simplify it yourself :/
\(\frac{2-(sec^2x)}{sec^2(x)}\\ =[2-\frac{1}{cos^2x}]\div sec^2(x)\\ =[\frac{2cos^2(x)-1}{cos^2x}]\times cos^2(x)\\ =[\frac{2cos^2(x)-1}{1}]\\ =2cos^2(x)-1\\ =cos^2(x)+cos^2(x)-1\\ =cos^2(x)-(-cos^2(x)+1)\\ =cos^2(x)-sin^2(x)\\ =cos(2x)\)
I typed it into the web2 calc but the calc did not simplify it
(2-(sec(x))^2)/((sec(x)^2) = ((2-((sec(x))^2))/(sec(x))^2)