+0  
 
0
4414
1
avatar

Point P has a y-coordinate of 4/5 in quadrant II. 

 

Can you help me find:

 

Sin t

cos t

tan t

sec t?

 

I thought you had to use x^2 + 4/5^2 = 1 to find x but I am not sure

 Jan 13, 2016
edited by Guest  Jan 13, 2016
 #1
avatar+130511 
+5

If we  have a unit circle......x  =  -sqrt (1 - (4/5)^2 )   =  -sqrt ( 25/25 - 16/25)   = - sqrt (9/25)   = -3/5

 

[Remember, x is negative in the 2nd quadrant ]

 

So

 

sin(t ) = y/r =  (4/5) / 1   = 4/5

 

cos (t)  = x / r  =  (-3/5)/ 1 = -3/5

 

tan(t)  = y/x =  [4/5] / [-3/5]   = [4/5] * [ -5/3]  = -4/3

 

sec (t)  = reciprocal of cos (t)  =  -5/3

 

 

 

cool cool cool

 Jan 13, 2016

1 Online Users