+0  
 
0
284
1
avatar

Ok so I know that:

cos (x)=sin(x+pi/2) (Radians)

what is:

sin(x)=cos(....)?

 Jul 26, 2019
 #1
avatar+25228 
+4

Ok so I know that:
\(\cos (x)=\sin\left(x+ \dfrac{\pi}{2}\right)\) (Radians)
what is:
\(\sin(x)=\cos(\ldots)\)?

 

\(\begin{array}{|rcll|} \hline \cos (x) &=& \sin\left(x+ \dfrac{\pi}{2}\right) \\ && \boxed{ x+ \dfrac{\pi}{2} = x' \quad | \quad - \dfrac{\pi}{2} \\ x = x'- \dfrac{\pi}{2} } \\ \cos (x'- \dfrac{\pi}{2}) &=& \sin\left(x'\right) \\ \sin(x') &=& \cos\left(x'- \dfrac{\pi}{2}\right) \\ \hline \end{array} \)

 

\(\mathbf{\sin(x)=\cos\left(x- \dfrac{\pi}{2}\right)} \)

 

laugh

 Jul 26, 2019

11 Online Users