We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
152
1
avatar

Ok so I know that:

cos (x)=sin(x+pi/2) (Radians)

what is:

sin(x)=cos(....)?

 Jul 26, 2019
 #1
avatar+23342 
+4

Ok so I know that:
\(\cos (x)=\sin\left(x+ \dfrac{\pi}{2}\right)\) (Radians)
what is:
\(\sin(x)=\cos(\ldots)\)?

 

\(\begin{array}{|rcll|} \hline \cos (x) &=& \sin\left(x+ \dfrac{\pi}{2}\right) \\ && \boxed{ x+ \dfrac{\pi}{2} = x' \quad | \quad - \dfrac{\pi}{2} \\ x = x'- \dfrac{\pi}{2} } \\ \cos (x'- \dfrac{\pi}{2}) &=& \sin\left(x'\right) \\ \sin(x') &=& \cos\left(x'- \dfrac{\pi}{2}\right) \\ \hline \end{array} \)

 

\(\mathbf{\sin(x)=\cos\left(x- \dfrac{\pi}{2}\right)} \)

 

laugh

 Jul 26, 2019

8 Online Users

avatar