+0  
 
0
544
1
avatar

Find the real solution of the equation:

1. x^2+2x-15 = 0

2. 2y^2-y-(1/2) = 0

**Note. (1/2) is in fraction. LOL. :)

3. x^2 - sqrt5 x +1 = 0

4. 3x^2+2x+2=0

5. 25x^2+70x+49=0

 Oct 13, 2014

Best Answer 

 #1
avatar+130511 
+5

1. x^2+2x-15 = 0     factor this

(x + 5) (x - 3) = 0     and setting both factors to 0, we have

x = -5 or x = 3

 

2. 2y^2 - y - 1/2 = 0     use the quadratic formula for this one.....we have

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{y}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{y}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = -{\mathtt{0.309\: \!016\: \!994\: \!374\: \!947\: \!4}}\\
{\mathtt{y}} = {\mathtt{0.809\: \!016\: \!994\: \!374\: \!947\: \!4}}\\
\end{array} \right\}$$

3. x^2 - sqrt5 x +1 = 0   this one is also a good candidate for the quad formula

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{0.618\: \!033\: \!988\: \!749\: \!894\: \!8}}\\
{\mathtt{x}} = {\mathtt{1.618\: \!033\: \!988\: \!749\: \!894\: \!8}}\\
\end{array} \right\}$$

BTW....this is an interesting solution......the first answer is "phi" and the second is "Phi"

 

4. 3x^2+2x+2=0      this has no real solution because the discriminant is < 0.... (b^2 - 4ac) = (2^2 -4*2*3) = (4 -24)= -20

 

5. 25x^2+70x+49=0   this is a perfect square trinomial. so we have

(5x + 7) (5x + 7)  = 0      and setting either factor to 0, we have that x = -7/5

 

 Oct 13, 2014
 #1
avatar+130511 
+5
Best Answer

1. x^2+2x-15 = 0     factor this

(x + 5) (x - 3) = 0     and setting both factors to 0, we have

x = -5 or x = 3

 

2. 2y^2 - y - 1/2 = 0     use the quadratic formula for this one.....we have

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{y}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{y}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = -{\mathtt{0.309\: \!016\: \!994\: \!374\: \!947\: \!4}}\\
{\mathtt{y}} = {\mathtt{0.809\: \!016\: \!994\: \!374\: \!947\: \!4}}\\
\end{array} \right\}$$

3. x^2 - sqrt5 x +1 = 0   this one is also a good candidate for the quad formula

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{0.618\: \!033\: \!988\: \!749\: \!894\: \!8}}\\
{\mathtt{x}} = {\mathtt{1.618\: \!033\: \!988\: \!749\: \!894\: \!8}}\\
\end{array} \right\}$$

BTW....this is an interesting solution......the first answer is "phi" and the second is "Phi"

 

4. 3x^2+2x+2=0      this has no real solution because the discriminant is < 0.... (b^2 - 4ac) = (2^2 -4*2*3) = (4 -24)= -20

 

5. 25x^2+70x+49=0   this is a perfect square trinomial. so we have

(5x + 7) (5x + 7)  = 0      and setting either factor to 0, we have that x = -7/5

 

CPhill Oct 13, 2014

1 Online Users