+0  
 
0
39
5
avatar

1) Compute 

 

2) One day, I decide to run to the park. On the way there, I run at a rate of  miles per hour for  hours. On the way back, I take the same path and jog at a slower rate of  miles per hour so that it takes me  hours to get home. Given that , what is ? Express your answer as a common fraction.

 

3) 

 

4) 

Find a non-zero value for such that  ax^2+8x+4=0 has only one solution.

 

Thanks!🙏🏼

 
Guest Jul 10, 2018
 #1
avatar
0

Is your 2nd question missing some numbers?

 
Guest Jul 10, 2018
 #2
avatar
+1

3)

 

Simplify the following:
2 + i - 4 - i + 2 + 4 i

Group like terms in 2 + i - 4 - i + 2 + 4 i.
2 + i - 4 - i + 2 + 4 i = (2 - 4 + 2) + (i - i + 4 i):
(2 - 4 + 2) + (i - i + 4 i)

Evaluate 2 - 4 + 2.
2 - 4 + 2 = 0:
i - i + 4 i

Add like terms in i - i + 4 i.
i - i + 4 i = 4 i:
4 i

 

1) Just evaluate by any calculator:

(2011^2 - 2006^2) / (2010^2 - 2007^2)

=5 / 3

 
Guest Jul 10, 2018
edited by Guest  Jul 10, 2018
 #5
avatar
0

Hey, I think you made a little mistake at the begining...

I think the equation should be (2+i)-(-4)+(-i)+(2+4i)...

 
Guest Jul 11, 2018
 #3
avatar+87293 
+1

Here's  (1)   without a calculator....note that the numerator and  denomonator  are  both just the difference of squares...so we have :

 

(2011 + 2006) ( 2011  - 2006)       

_______________________    =

(2010 + 2007) ( 2010 - 2007)

 

 

 

(4017) (5)

_________  =

(4017) (3)

 

 

 5

__

 3

 

cool cool cool

 
CPhill  Jul 10, 2018
 #4
avatar+87293 
+1

Here's  4

 

ax^2   + 8x  +  4   = 0 

 

If this has only one solution.....then it will be true  that the  discriminant given by  (8)^2  - 4 (a) (4)  will = 0

 

So we have

 

(8)^2  - 4 (a) (4)   =  0   simplify

 

64  - 16a    = 0      add   16a  to both sides

 

64   = 16a        divide both sides by 16

 

4  =  a 

 

 

cool cool cool

 
CPhill  Jul 10, 2018

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.