Use the definition of the derivative to find the derivative $$\small{\text{$f(x)=x^2-2$}}$$
$$\\\lim \limits_{h \to 0}
\left[
\frac{f\left( x+h \right) - f\left( x \right)}{h}
\right] \small{\text{$\quad f(x+h) = (x+h)^2-2 \qquad f(x) = x^2-2 $ }}\\\\
\lim \limits_{h \to 0}
\left[
\frac{\left( (x+h)^2-2 \right) - \left( x^2-2 \right)}{h}
\right]
=
\lim \limits_{h \to 0}
\left[
\frac{ x^2+2*x*h+h^2-2 - x^2+2}{h}
\right]
=
\lim \limits_{h \to 0}
\left[
\frac{ 2*x*h+h^2}{h}
\right] \\\\
=
\lim \limits_{h \to 0}
\left[
\frac{ 2*x*h}{h}+\frac{ h^2}{h}
\right]
=
\lim \limits_{h \to 0}
\left[
2*x+ h
\right] = 2x$$
![]()
The derivative is the gradient of the tangent to the curve at any given point.
if the curve is a line as it is in f(x)=2x-2 then the gradient stays the same all the time.
The gradient of this line is 2. Therefore the derivative is 2. ![]()
Use the definition of the derivative to find the derivative $$\small{\text{$f(x)=x^2-2$}}$$
$$\\\lim \limits_{h \to 0}
\left[
\frac{f\left( x+h \right) - f\left( x \right)}{h}
\right] \small{\text{$\quad f(x+h) = (x+h)^2-2 \qquad f(x) = x^2-2 $ }}\\\\
\lim \limits_{h \to 0}
\left[
\frac{\left( (x+h)^2-2 \right) - \left( x^2-2 \right)}{h}
\right]
=
\lim \limits_{h \to 0}
\left[
\frac{ x^2+2*x*h+h^2-2 - x^2+2}{h}
\right]
=
\lim \limits_{h \to 0}
\left[
\frac{ 2*x*h+h^2}{h}
\right] \\\\
=
\lim \limits_{h \to 0}
\left[
\frac{ 2*x*h}{h}+\frac{ h^2}{h}
\right]
=
\lim \limits_{h \to 0}
\left[
2*x+ h
\right] = 2x$$
![]()