+0  
 
0
83
1
avatar+146 

Use the formula S = n (n + 1)2 to find the sum of 1  + 2  + 3  + ...  + 385.=

 

.

Use the formula S = n2 to find the sum of 1  + 3 + 5  + ...  + 915. =

(Hint: To find  n, add 1 to the last term and divide by  2.)

cassie19  Sep 6, 2017
Sort: 

1+0 Answers

 #1
avatar+78755 
+2

 

 

Sum    1 + 2 + 3 + ....+  385    =     [ 385] [386] / 2  =   74305

 

Sum  of  first n odds  =  [ ( odd integer + 1 )  / 2 ] ^2  =  ( [ 915 + 1 ] .2 )^2  =

 

( 916 / 2)^2  =  458^2  = 209764 

 

 

cool cool cool

CPhill  Sep 6, 2017

3 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details