+0  
 
0
434
1
avatar+201 

Use the formula S = n (n + 1)2 to find the sum of 1  + 2  + 3  + ...  + 385.=

 

.

Use the formula S = n2 to find the sum of 1  + 3 + 5  + ...  + 915. =

(Hint: To find  n, add 1 to the last term and divide by  2.)

cassie19  Sep 6, 2017
 #1
avatar+87714 
+2

 

 

Sum    1 + 2 + 3 + ....+  385    =     [ 385] [386] / 2  =   74305

 

Sum  of  first n odds  =  [ ( odd integer + 1 )  / 2 ] ^2  =  ( [ 915 + 1 ] .2 )^2  =

 

( 916 / 2)^2  =  458^2  = 209764 

 

 

cool cool cool

CPhill  Sep 6, 2017

17 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.