+0

# using elimination method/ SHOW WORK

0
354
1

-2x-5y=49 ; 4x+3y=35 /using elimination method/ SHOW WORK​

Jul 13, 2017
edited by Guest  Jul 13, 2017

#1
+7348
+2

To do the elimination method, line the two equations up and add them together.

-2x - 5y  =  49

4x + 3y  =  35

We could add them together now, but it won't help us find the value of  x  or  y . So multiply the first equation through by  2  .

-4x - 10y  =  98

Now line this up with the second equation and add them together.

-4x - 10y  =  98

4x  + 3y  =  35

0   - 7y   =  133

-7y  =  133                Divide both sides of this equation by -7 .

y  =  -19

Plug this value for  y  into either equation to find the value of  x  .

-2x - 5(-19)  =  49

-2x + 95  =  49          Subtract  95  from both sides of this equation.

-2x  =  -46                 Divide both sides of this equation by  -2  .

x  =  23

Jul 13, 2017

#1
+7348
+2

To do the elimination method, line the two equations up and add them together.

-2x - 5y  =  49

4x + 3y  =  35

We could add them together now, but it won't help us find the value of  x  or  y . So multiply the first equation through by  2  .

-4x - 10y  =  98

Now line this up with the second equation and add them together.

-4x - 10y  =  98

4x  + 3y  =  35

0   - 7y   =  133

-7y  =  133                Divide both sides of this equation by -7 .

y  =  -19

Plug this value for  y  into either equation to find the value of  x  .

-2x - 5(-19)  =  49

-2x + 95  =  49          Subtract  95  from both sides of this equation.

-2x  =  -46                 Divide both sides of this equation by  -2  .

x  =  23

hectictar Jul 13, 2017