+0

# Using Law of sines SSA ( side side angle)

0
165
2

triangle was A,B,C angle B 56 and side length little c is 14 little b is 17 solve triangle using Law of sines (SSA case)

Click link for triangle ignore letter D in the photo

Guest Mar 5, 2017

#1
+6364
+6

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \\~\\ \frac{\sin 56}{17} = \frac{\sin C}{14} \\~\\ \frac{14\sin 56}{17} = \sin C \\~\\ \arcsin{(\frac{14\sin 56}{17})} = C \\~\\ C \approx 43.058^{\circ}$$

Since there are 180 degrees in every triangle,

180 = A + B + C

A = 180 - B - C

A ≈ 180 - 56 - 43.058

A ≈ 80.942º

All that's left to find is side a.

$$\frac{\sin 56}{17} \approx \frac{\sin 80.942}{a} \\~\\ (a)\frac{\sin 56}{17} \approx \sin 80.942 \\~\\ a \approx \frac{17\sin80.942}{sin56} \\~\\ a \approx 20.250$$

Recap:

A ≈ 80.942º          a ≈ 20.25

B = 56º                   b = 17

C ≈ 43.058º            c = 14

*edit* I put c = 4 instead of c = 14

hectictar  Mar 6, 2017
edited by hectictar  Mar 6, 2017
Sort:

#1
+6364
+6

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \\~\\ \frac{\sin 56}{17} = \frac{\sin C}{14} \\~\\ \frac{14\sin 56}{17} = \sin C \\~\\ \arcsin{(\frac{14\sin 56}{17})} = C \\~\\ C \approx 43.058^{\circ}$$

Since there are 180 degrees in every triangle,

180 = A + B + C

A = 180 - B - C

A ≈ 180 - 56 - 43.058

A ≈ 80.942º

All that's left to find is side a.

$$\frac{\sin 56}{17} \approx \frac{\sin 80.942}{a} \\~\\ (a)\frac{\sin 56}{17} \approx \sin 80.942 \\~\\ a \approx \frac{17\sin80.942}{sin56} \\~\\ a \approx 20.250$$

Recap:

A ≈ 80.942º          a ≈ 20.25

B = 56º                   b = 17

C ≈ 43.058º            c = 14

*edit* I put c = 4 instead of c = 14

hectictar  Mar 6, 2017
edited by hectictar  Mar 6, 2017
#2
+82925
+5

triangle was A,B,C angle B 56 and side length little c is 14 little b is 17 solve triangle using Law of sines (SSA case)

Solving for angle C we have

sin C / 14  = sin 56 / 17

sin C  = [14 * sin 56] / 17

arcsin [ (14 * sin 56) / 17 ]  ≈ 43°

And angle A   =   180 - 56 - 43  ≈   81°

And  side a  =

a / sin 81  =  17/ sin 56   →  a = 17sin 81/sin 56 ≈ 20.25

To see if we have a second triangle, C might also  be  180 - 43  = 137°

However......when we add this to the known angle of 56°, we get more than 180°....so....only one triangle is possible

a = 20.25        b = 17       c  =  14

A = 81            B = 56       C = 43

CPhill  Mar 6, 2017

### 10 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details