sinAa=sinBb=sinCc sin5617=sinC14 14sin5617=sinC arcsin(14sin5617)=C C≈43.058∘
Since there are 180 degrees in every triangle,
180 = A + B + C
A = 180 - B - C
A ≈ 180 - 56 - 43.058
A ≈ 80.942º
All that's left to find is side a.
sin5617≈sin80.942a (a)sin5617≈sin80.942 a≈17sin80.942sin56 a≈20.250
Recap:
A ≈ 80.942º a ≈ 20.25
B = 56º b = 17
C ≈ 43.058º c = 14
*edit* I put c = 4 instead of c = 14
sinAa=sinBb=sinCc sin5617=sinC14 14sin5617=sinC arcsin(14sin5617)=C C≈43.058∘
Since there are 180 degrees in every triangle,
180 = A + B + C
A = 180 - B - C
A ≈ 180 - 56 - 43.058
A ≈ 80.942º
All that's left to find is side a.
sin5617≈sin80.942a (a)sin5617≈sin80.942 a≈17sin80.942sin56 a≈20.250
Recap:
A ≈ 80.942º a ≈ 20.25
B = 56º b = 17
C ≈ 43.058º c = 14
*edit* I put c = 4 instead of c = 14
triangle was A,B,C angle B 56 and side length little c is 14 little b is 17 solve triangle using Law of sines (SSA case)
Solving for angle C we have
sin C / 14 = sin 56 / 17
sin C = [14 * sin 56] / 17
arcsin [ (14 * sin 56) / 17 ] ≈ 43°
And angle A = 180 - 56 - 43 ≈ 81°
And side a =
a / sin 81 = 17/ sin 56 → a = 17sin 81/sin 56 ≈ 20.25
To see if we have a second triangle, C might also be 180 - 43 = 137°
However......when we add this to the known angle of 56°, we get more than 180°....so....only one triangle is possible
a = 20.25 b = 17 c = 14
A = 81 B = 56 C = 43