+0  
 
0
509
1
avatar

Using the letters $A$ and $B$, the following two-letter code words can be formed: $AA$, $AB$, $BB$, $BA$. Using the letters $A$, $B$, and $C$, how many different three-letter code words can be formed?

 Feb 21, 2015

Best Answer 

 #1
avatar+130516 
+5

Any three can be in the first position...any three in the second and any three in the last

So

3 x 3 x 3   = 27

This also implies that for any number of n different letters...nn "words" can be formed in this manner...

 

 Feb 21, 2015
 #1
avatar+130516 
+5
Best Answer

Any three can be in the first position...any three in the second and any three in the last

So

3 x 3 x 3   = 27

This also implies that for any number of n different letters...nn "words" can be formed in this manner...

 

CPhill Feb 21, 2015

0 Online Users