+0  
 
0
340
2
avatar+16 

I tried by starting with (x+y)^2+(x-y)^2>=(x-y)^2, which brought me to 2x^2+2y^2>= (|x|-|y|)^2 , have no idea what else to try. Thanks!

AspiringActuary  Jul 26, 2017
edited by Guest  Jul 26, 2017

Best Answer 

 #1
avatar+20037 
+3

Using triangle inequity prove |x+y|>=||x|-|y||

 

\(\begin{array}{|rcll|} \hline |x+y| & \stackrel{?} \ge & ||x|-|y|| \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline &|y| = |(x+y)-x| & \le & |x+y| + |x| \\ & |y| & \le & |x+y| + |x| \\ (1) & |y|-|x| & \le & |x+y| \\\\ & |x| = |(x+y)-y| & \le & |x+y| + |y| \\ & |x| & \le & |x+y| + |y| \\ (2) & |x|-|y| & \le & |x+y| \\\\ \hline (1) \text{ and } (2) & ||x|-|y| | & \le & |x+y| \\ & |x+y| & \ge & ||x|-|y| | \\ \hline \end{array}\)

 

laugh

heureka  Jul 26, 2017
 #1
avatar+20037 
+3
Best Answer

Using triangle inequity prove |x+y|>=||x|-|y||

 

\(\begin{array}{|rcll|} \hline |x+y| & \stackrel{?} \ge & ||x|-|y|| \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline &|y| = |(x+y)-x| & \le & |x+y| + |x| \\ & |y| & \le & |x+y| + |x| \\ (1) & |y|-|x| & \le & |x+y| \\\\ & |x| = |(x+y)-y| & \le & |x+y| + |y| \\ & |x| & \le & |x+y| + |y| \\ (2) & |x|-|y| & \le & |x+y| \\\\ \hline (1) \text{ and } (2) & ||x|-|y| | & \le & |x+y| \\ & |x+y| & \ge & ||x|-|y| | \\ \hline \end{array}\)

 

laugh

heureka  Jul 26, 2017
 #2
avatar+16 
+1

Thanks so much Heureka, legend!

AspiringActuary  Jul 26, 2017

24 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.