+0  
 
0
494
1
avatar

v(t)=53(1-e^-.16*4)

 Aug 1, 2014

Best Answer 

 #1
avatar+118723 
+5

 

53(1-e^-.16*4)

 

$${\mathtt{53}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}{{\mathtt{e}}}^{{\mathtt{\,-\,}}\left({\mathtt{0.16}}{\mathtt{\,\times\,}}{\mathtt{4}}\right)}\right) = {\mathtt{25.053\: \!501\: \!525\: \!718\: \!429\: \!5}}$$

$${\mathtt{53}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}{{\mathtt{e}}}^{\left(-{\mathtt{0.16}}\right)}{\mathtt{\,\times\,}}{\mathtt{4}}\right) = -{\mathtt{127.654\: \!483\: \!260\: \!836\: \!795\: \!6}}$$

Which do you want?  You actually asked for the second one.  

 Aug 2, 2014
 #1
avatar+118723 
+5
Best Answer

 

53(1-e^-.16*4)

 

$${\mathtt{53}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}{{\mathtt{e}}}^{{\mathtt{\,-\,}}\left({\mathtt{0.16}}{\mathtt{\,\times\,}}{\mathtt{4}}\right)}\right) = {\mathtt{25.053\: \!501\: \!525\: \!718\: \!429\: \!5}}$$

$${\mathtt{53}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}{{\mathtt{e}}}^{\left(-{\mathtt{0.16}}\right)}{\mathtt{\,\times\,}}{\mathtt{4}}\right) = -{\mathtt{127.654\: \!483\: \!260\: \!836\: \!795\: \!6}}$$

Which do you want?  You actually asked for the second one.  

Melody Aug 2, 2014

1 Online Users