+0  
 
0
304
1
avatar+10 

5^2*5^4*5^6*.......5^2n = (0.008)^-30 find the value of n

kates  Aug 11, 2017
 #1
avatar+20035 
+3

5^2*5^4*5^6*.......5^(2n) = (0.008)^(-30) find the value of n

 

\(\begin{array}{|rclrcl|} \hline 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& 0.008^{(-30)} \\ && 0.008 &=& \frac{8}{1000} \\ && &=& \frac{2^3}{10^3} \\ && &=& \left( \frac{2}{10} \right)^3 \\ && &=& \left( \frac{1}{5} \right)^3 \\ && &=& \frac{1}{5^3} \\ && &=& 5^{-3} \\ 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& (5^{-3})^{-30} \\ 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& 5^{(-3)\cdot (-30) } \\ 5^2\cdot 5^4 \cdot 5^6 \cdot \ldots \cdot 5^{2n} &=& 5^{90} \\ 5^{2+4+6 \cdot \ldots \cdot 2n } &=& 5^{90} \\\\ 2+4+6 \cdot \ldots \cdot 2n &=& 90 \\ 2\cdot(1+2+3 + \ldots + n ) &=& 90 \\ && 1+2+3 + \ldots + n &=& \frac{(1+n)\cdot n}{2} \\ 2\cdot \Big(\frac{(1+n)\cdot n}{2} \Big) &=& 90 \\ (1+n)\cdot n &=& 90 \\ n^2+n -90 &=& 0 \\ (n-9)\cdot(n+10) &=& 0 \\ \hline \end{array}\)

 

\(n = 9 \text{ or } n = -10\)

 

Because n > 0:

n = 9

 

\(5^2\cdot 5^4 \cdot 5^6\cdot 5^8\cdot 5^{10}\cdot 5^{12} \cdot 5^{14}\cdot 5^{16}\cdot 5^{18} = 0.008^{(-30)} \)

 

laugh

heureka  Aug 11, 2017

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.