+0  
 
+1
41
2
avatar+910 

Really confused on this one. 

Julius  May 2, 2018
Sort: 

2+0 Answers

 #1
avatar+19344 
+2

Vector Problem

\(\begin{array}{|rcll|} \hline && |3\vec{x}+2\vec{y}| \qquad \text{Formula: $|\vec{v}|=\sqrt{\vec{v}\cdot \vec{v}}$ } \\\\ &=& \sqrt{ (3\vec{x}+2\vec{y}) (3\vec{x}+2\vec{y}) } \\ &=& \sqrt{ 9\vec{x}^2 + 4 \vec{y}^2 + 2\cdot 3 \cdot 2\cdot( \vec{x}\cdot \vec{y}) } \\\\ && \qquad \text{Formula: $|\vec{x}^2|=|\vec{x}|^2 = x^2 \qquad |\vec{y}^2|=|\vec{y}|^2 = y^2$ } \\\\ &=& \sqrt{ 9x^2 + 4 y^2 + 12 \cdot(\vec{x}\cdot \vec{y}) } \\\\ && \qquad \text{unit vectors: $|\vec{x}|=x=1 \quad|\vec{y}|=y=1$} \\\\ &=& \sqrt{ 9 + 4 + 12 \cdot (\vec{x}\cdot \vec{y}) } \\\\ && \qquad \text{Formula: $\vec{x}\cdot \vec{y} = |\vec{x}|\cdot |\vec{y}| \cdot \cos(120^{\circ})=1\cdot 1\cdot (-0.5)=-0.5 $ } \\\\ &=& \sqrt{ 9 + 4 + 12 \cdot (-0.5) } \\\\ &=& \sqrt{ 13 -6 } \\\\ &\mathbf{=}& \mathbf{\sqrt{ 7 }} \\ \hline \end{array} \)

 

laugh

heureka  May 3, 2018
 #2
avatar+910 
+2

Thank you so much for all your help, Heureka!!!

Julius  May 3, 2018

18 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy