We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
256
1
avatar+429 

 

smileysmileysmiley

 Sep 16, 2018
edited by qualitystreet  Sep 16, 2018
 #1
avatar+22546 
+9

Vectors:

 

a)
Find CB:

\(\begin{array}{|rcll|} \hline -DC+DA+AB&=& CB \\ -p+2q-p+5p &=& CB \\ 2q + 3p &=& CB \\ \mathbf{\vec{CB}} & \mathbf{=} & \mathbf{2q + 3p} \\ \hline \end{array}\)

 

b)

\(\begin{array}{|rcll|} \hline AQ &=& \dfrac25 AB \quad & | \quad AB =5p \\ &=& \dfrac25 \cdot 5p \\ \mathbf{AQ} & \mathbf{=} & \mathbf{2p} \\\\ QB &=& \dfrac35 AB \quad & | \quad AB =5p \\ &=& \dfrac35 \cdot 5p \\ \mathbf{QB} & \mathbf{=} & \mathbf{3p} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{DA}{2}+PQ+QB-CB-DC &=& 0 \quad | \quad DA =2q-p \quad QB = 3p \quad DC = p \\ \dfrac{2q-p}{2}+PQ+3p-CB-p &=& 0 \\ \dfrac{2q-p}{2}+PQ+2p-CB &=& 0 \\ \dfrac{2q-p}{2}+PQ+2p &=& CB \\ && \mathbf{\vec{CB}=2q + 3p} \\ && 2q = CB - 3p \\ && q = \dfrac{CB - 3p}{2} \\ \dfrac{2\left(\dfrac{CB - 3p}{2}\right)-p}{2}+PQ+2p &=& CB \\ \dfrac{CB - 3p-p}{2}+PQ+2p &=& CB \\ \dfrac{CB - 4p}{2}+PQ+2p &=& CB \\ \dfrac{CB}{2} - 2p+PQ+2p &=& CB \\ \dfrac{CB}{2}+PQ&=& CB \\ PQ&=& CB -\dfrac{CB}{2} \\ \mathbf{PQ} & \mathbf{=} & \mathbf{\dfrac12\cdot CB} \\ \hline \end{array}\)

 

laugh

 Sep 17, 2018
edited by heureka  Sep 18, 2018

8 Online Users

avatar
avatar
avatar