+0  
 
0
667
2
avatar

You lay on the ground shooting Velcro b***s at a velcro wall 30m away. the b***s leave the gun at the inital speed of 23m/s and you are aiming at a 35º angle. How high above the ground will the b***s stick to the wall?

 Jul 7, 2014

Best Answer 

 #1
avatar+118724 
+8

Initially       $$t=0$$

$$\\\ddot{x}=0 \quad \dot{x}=23cos35^0 \quad x=0\\\\
\ddot{y}=-9.8 \quad \dot{y}=23sin35^0 \quad y=0\\\\$$

------------------------------------------------------------------

Ongoing

$$\\\ddot{x}=0\\\\
\dot{x}=23cos35^0\\\\
x=(23cos35^0)t$$
    
$$\\\ddot{y}=-9.8\\\\
\dot{y}=-9.8t+23sin35^0\\\\
y=\frac{-9.8t^2}{2}+(23sin35^0)t\\
y=-4.9t^2+(23sin35^0)t$$

 

Find y when x=30

When x=30

30=(23cos35)t

t=30/(23cos35)

t=1.592314681

$${\mathtt{\,-\,}}{\mathtt{4.9}}{\mathtt{\,\times\,}}{{\mathtt{1.592\: \!314\: \!681}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{23}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{35}}^\circ\right)}{\mathtt{\,\times\,}}{\mathtt{1.592\: \!314\: \!681}} = {\mathtt{8.582\: \!442\: \!534\: \!071\: \!419\: \!9}}$$

The ball will hit the wall 8.58 metres above the floor.

 Jul 7, 2014
 #1
avatar+118724 
+8
Best Answer

Initially       $$t=0$$

$$\\\ddot{x}=0 \quad \dot{x}=23cos35^0 \quad x=0\\\\
\ddot{y}=-9.8 \quad \dot{y}=23sin35^0 \quad y=0\\\\$$

------------------------------------------------------------------

Ongoing

$$\\\ddot{x}=0\\\\
\dot{x}=23cos35^0\\\\
x=(23cos35^0)t$$
    
$$\\\ddot{y}=-9.8\\\\
\dot{y}=-9.8t+23sin35^0\\\\
y=\frac{-9.8t^2}{2}+(23sin35^0)t\\
y=-4.9t^2+(23sin35^0)t$$

 

Find y when x=30

When x=30

30=(23cos35)t

t=30/(23cos35)

t=1.592314681

$${\mathtt{\,-\,}}{\mathtt{4.9}}{\mathtt{\,\times\,}}{{\mathtt{1.592\: \!314\: \!681}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{23}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{35}}^\circ\right)}{\mathtt{\,\times\,}}{\mathtt{1.592\: \!314\: \!681}} = {\mathtt{8.582\: \!442\: \!534\: \!071\: \!419\: \!9}}$$

The ball will hit the wall 8.58 metres above the floor.

Melody Jul 7, 2014
 #2
avatar+33665 
+5

Here's an approach using the constant acceleration kinetics equations:

velcro b***s

 Jul 7, 2014

1 Online Users