Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1019
2
avatar+895 

1) csc3(w)=cot3(w)+cot(w)cos(w)

 Mar 28, 2018
edited by AdamTaurus  Mar 28, 2018
edited by AdamTaurus  Mar 28, 2018
edited by AdamTaurus  Mar 29, 2018
 #1
avatar+9488 
+2

Note that...

 

sin2(w)+cos2(w)=1sin2(w)sin2(w)+cos2(w)sin2(w)=1sin2(w)1+cot2(w)=csc2(w)

 

------------------------------------------------------------

 

csc3(w)=cot3(w)+cot(w)cos(w) =cot(w)(cot2(w)+1)cos(w) =cot(w)(1+cot2(w))cos(w) =cot(w)csc2(w)cos(w) =1cos(w)cot(w)csc2(w) =1cos(w)cos(w)sin(w)csc2(w) =1sin(w)csc2(w) =csc(w)csc2(w) =csc3(w)

 Mar 29, 2018
 #2
avatar+26396 
+2

Verify (Prove) Each Identity

csc^3(w)=\frac{cot^3(w)+cot(w)}{cos(w)}

csc3(w)=cot3(w)+cot(w)cos(w)

 

csc3(w)=cot3(w)+cot(w)cos(w)=cot(w)(cot2(w)+1)cos(w)|cot(w)=cos(w)sin(w)=cos(w)sin(w)(cos2(w)sin2(w)+1)cos(w)=cos(w)sin(w)(cos2(w)+sin2(w)sin2(w))cos(w)|cot2(w)+sin2(w)=1=cos(w)sin(w)(1sin2(w))cos(w)=cos(w)sin3(w)cos(w)=cos(w)sin3(w)cos(w)=1sin3(w)|1sin(w)=csc(w)=csc3(w)

 

 

laugh

 Mar 29, 2018

3 Online Users