Let \(f(x)=(x^2+6x+9)^{50}-4x+3\), and let \(r_1,r_2,\ldots,r_{100}\)be the roots of \(f(x).\)
Compute \((r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}.\)
-------Thanks!
I see you are on the Vieta's Formulas Week of Intermediate Algebra right now. This hint has probably already been given, but do you notice anything interesting about the first term of the function. Namely, does it remind you of a certain (a+b)^2?
P.S. Ask in the AoPS forum! Their advice will be way better than mine.
This is a very, very interesting problem, and I don't want to spoil the answer for you. Probably one of my favorites so far.
The reason I say it is because the solution is very simple and elegant. Also, this is one of the few writing problems that may be possible by yourself.
Let \(f(x)=(x^2+6x+9)^{50}-4x+3\), and let \(r_1,\ r_2,\ \ldots,\ r_{100}\) be the roots of \( f(x)\).
Compute \((r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}\).
\(\begin{array}{|rcll|} \hline \mathbf{f(x)} &=& \mathbf{(x^2+6x+9)^{50}-4x+3} \\ &=& \left((x+3)^2\right)^{50}-4x+3 \\ \mathbf{f(x)} &=& \mathbf{\left( x+3 \right)^{100}-4x+3} \\ \hline \end{array}\)
\(\begin{array}{|lrcll|} \hline & f(r_1) =0 &=& \left( r_1+3 \right)^{100}-4r_1+3 \\ & f(r_2) =0 &=& \left( r_2+3 \right)^{100}-4r_2+3 \\ & \ldots \\ & f(r_{100}) =0 &=& \left( r_{100}+3 \right)^{100}-4r_{100}+3 \\ & \hline \\ \text{sum} & 0 &=& (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} \\ & && -4(r_1+r_2+\ldots + r_{100}) + 3\cdot 100 \\ \hline \end{array}\)
\(\begin{array}{|lrcll|} \hline (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(r_1+r_2+\ldots + r_{100}) - 300 \\ \hline \end{array}\)
\(\mathbf{\text{vieta:}}\)
For any polynomial equation
\(0=x^n+a_{n-1}·x^{n-1}+...+a_2·x^2+a_1·x^1+a_0\)
with the solutions \(r_1\dots r_n\), the relatively simple formulas for \(a_0\) and \(a_{n-1}\) are:
\(a_0=(-1)^n \prod\limits_{k=1}^{n} r_k \\ a_{n-1}= -\sum \limits_{k=1}^{n} r_k\)
\(\begin{array}{|rcll|} \hline && \left( x+3 \right)^{100} \\ \\ &=& x^{100} + \binom{100}{1}x^{99}\cdot 3 + \ldots \\ \\ &=& x^{100} + \underbrace{300}_{ \underbrace{=a_{n-1}}_{= -(r_1+r_2+\ldots + r_{100})}} x^{99} + \ldots \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(r_1+r_2+\ldots + r_{100}) - 300 \\ && \boxed{r_1+r_2+\ldots + r_{100} = -300} \\ (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(-300) - 300 \\ \mathbf{(r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}} &=& \mathbf{-1500} \\ \hline \end{array}\)
See here: https://math.stackexchange.com/questions/2165329/vietas-formula-hard-problem