We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
159
1
avatar+75 

If f(x) = a+bx, what are the real values of a and b such that f(f(f(1))) = 29 and f(f(f(0))) = 27

 Oct 16, 2018
 #1
avatar+322 
+1

 f(f(f(x)))=a+b( a+b( a+bx))

 f(f(f(0)))=a+b(a+b(a))=27

 f(f(f(1)))=a+b(a+b(a+b))=29 

f(f(f(0)))=a+ba+b^2a=27

f(f(f(1)))=a+ba+ab^2+b^3=29

(1) a+ba+b^2a=27 -> f(f(f(1)))=(1)+b^3=29 so 27 + b^3 = 29 <=> b^3 = 29-27 <=> b^3 = 2 <=> b = \(\sqrt[3]{2}\)\(\)

 

 

after in f(f(f(1))) you are replacing and find the a!
 

 Oct 16, 2018

15 Online Users

avatar