$$\\y=2012^{2012}\\\\
log y=log(2012^{2012})\\\\
log y=2012log(2012)\\\\$$
$${\mathtt{2\,012}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{2\,012}}\right) = {\mathtt{6\,646.899\: \!488\: \!484\: \!386\: \!68}}$$
$$\\log y = 6646.89948848438668\\\\
y=10^{6646.89948848438668}\\\\
y=10^{6646}*10^{0.89948848438668}\\\\
y=10^{0.89948848438668}*10^{6646}\\\\$$
$${{\mathtt{10}}}^{\left({\mathtt{0.899\: \!488\: \!484\: \!386\: \!68}}\right)} = {\mathtt{7.933\: \!932\: \!191\: \!378\: \!429\: \!9}}$$
so
$$\\2012^{2012}=7.9339321913784299 \times 10^{6646}$$
That is an approximations :)
I learned to do this from CPhill. Thanks Chris
$$\\y=2012^{2012}\\\\
log y=log(2012^{2012})\\\\
log y=2012log(2012)\\\\$$
$${\mathtt{2\,012}}{\mathtt{\,\times\,}}{log}_{10}\left({\mathtt{2\,012}}\right) = {\mathtt{6\,646.899\: \!488\: \!484\: \!386\: \!68}}$$
$$\\log y = 6646.89948848438668\\\\
y=10^{6646.89948848438668}\\\\
y=10^{6646}*10^{0.89948848438668}\\\\
y=10^{0.89948848438668}*10^{6646}\\\\$$
$${{\mathtt{10}}}^{\left({\mathtt{0.899\: \!488\: \!484\: \!386\: \!68}}\right)} = {\mathtt{7.933\: \!932\: \!191\: \!378\: \!429\: \!9}}$$
so
$$\\2012^{2012}=7.9339321913784299 \times 10^{6646}$$
That is an approximations :)
I learned to do this from CPhill. Thanks Chris