2x^2=14-x add x to both sides and subtract 14 from both sides
2x^2 + x - 14 = 0 this won't factor....using the on-site solver (which utilizes the quadratic formula) we have
$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{14}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.907\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
{\mathtt{x}} = {\mathtt{2.407\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
\end{array} \right\}$$
2x^2=14-x add x to both sides and subtract 14 from both sides
2x^2 + x - 14 = 0 this won't factor....using the on-site solver (which utilizes the quadratic formula) we have
$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{14}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.907\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
{\mathtt{x}} = {\mathtt{2.407\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
\end{array} \right\}$$