+0  
 
0
815
2
avatar

what is 2x^2=14-x

 Oct 28, 2014

Best Answer 

 #3
avatar+130511 
+5

2x^2=14-x        add x to both sides and subtract 14 from both sides

2x^2 + x - 14 = 0     this won't factor....using the on-site solver (which utilizes the quadratic formula) we have

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{14}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.907\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
{\mathtt{x}} = {\mathtt{2.407\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
\end{array} \right\}$$

 

 Oct 28, 2014
 #2
avatar+6 
0

The answwer is 1, I think.

 Oct 28, 2014
 #3
avatar+130511 
+5
Best Answer

2x^2=14-x        add x to both sides and subtract 14 from both sides

2x^2 + x - 14 = 0     this won't factor....using the on-site solver (which utilizes the quadratic formula) we have

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{14}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{113}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.907\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
{\mathtt{x}} = {\mathtt{2.407\: \!536\: \!453\: \!183\: \!662\: \!4}}\\
\end{array} \right\}$$

 

CPhill Oct 28, 2014

0 Online Users