What is cos-1(0.8333333)
$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}^{\!\!\mathtt{-1}}{\left({\mathtt{0.833\: \!333\: \!33}}\right)} = {\mathtt{33.557\: \!310\: \!107\: \!427^{\circ}}}$$
I just typed acos(0.833333333) into the calc
$${cos}\left({\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\times\,}}\left({\mathtt{0.833\: \!333\: \!3}}\right) = {\mathtt{\,-\,}}{\mathtt{0.833\: \!333\: \!3}}{\mathtt{\,\small\textbf+\,}}ABC$$
cos-1(0.8333333) = cos-1(5 / 6 ) = about 33.56°
[ This angle could also lie in the 4th quadrant .... ]