+0  
 
0
232
2
avatar

find the equation of a line, in general form that is parallel to hte line 3x-5y-15=0 and passes threw the point (3,-2)

Guest Mar 6, 2017
 #1
avatar+87309 
+5

3x-5y-15=0   rearrange to solve for y

 

3x - 15  = 5y   divide both sides by 5

 

(3/5)x - 3   = y       the slope is  (3/5)

 

And since parallel lines have the same slope.....the equation of a parallel line passing through  (3, -2)  is

 

y = (3/5) (x - 3) - 2

 

y = (3/5)x - 9/5 - 2

 

y = (3/5)x - 9/5 - 105

 

y = (3/5)x - 19/5

 

 

cool cool cool

CPhill  Mar 6, 2017
 #2
avatar+19653 
0

find the equation of a line, in general form that is parallel to hte line 3x-5y-15=0 and passes threw the point (3,-2)

 

Formula:

\(\begin{array}{|rcll|} \hline ax+by+c &=& 0 \quad & | \quad \qquad \text{parallel and passes through the point } P\binom{x_y}{y_p} \\\\ ax+by-(ax_p+by_p) &=& 0 \\ \hline \end{array}\)

 

The equation:

\(\begin{array}{|rcll|} \hline 3x-5y-15 &=& 0\quad & | \quad a=3 \quad b= -5 \\\\ ax+by-(ax_p+by_p) &=& 0 \quad & |\quad x_p = 3 \quad y_p = -2 \\ 3x-5y-[3\cdot 3-5\cdot (-2)] &=& 0 \\ 3x-5y-(9+10) &=& 0 \\ \mathbf{3x-5y-19} & \mathbf{=} & \mathbf{0} \qquad \text{or } \qquad \mathbf{y = \frac35\cdot x -\frac{19}{5} }\\ \hline \end{array} \)

 

laugh

heureka  Mar 6, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.