+0  
 
0
61
1
avatar

What is the 23rd term of the Fibonacci sequence? Use the Binet's formula for n = 23.

 Feb 5, 2020

Best Answer 

 #1
avatar
+1

[(1 + sqrt(5))^23 - (1 - sqrt(5))^23] / [2^23*sqrt(5)] = 28,657 - the 23rd Fibonacci Number.

 Feb 5, 2020
 #1
avatar
+1
Best Answer

[(1 + sqrt(5))^23 - (1 - sqrt(5))^23] / [2^23*sqrt(5)] = 28,657 - the 23rd Fibonacci Number.

Guest Feb 5, 2020

16 Online Users

avatar
avatar
avatar
avatar