+0  
 
0
76
2
avatar

What is the area, in square units, of the interior region formed by the lines $y = 4x - 6, y = -2x +12$ and the $y$-axis?

Guest Jun 24, 2018
 #1
avatar
+1

18/2=9*3=27

Guest Jun 25, 2018
 #2
avatar+88962 
+2

 

This region will form a triangle

 

To find the height of this triangle, let us fihd the x value of the intersection of the lines....set the y's  equal

 

4x  - 6  = -2x + 12     add 2x to both sides, add 6 to both sides

 

6x  = 18     divide both  sides by  6

 

x  = 3         this x value will be the height of the triangle

 

And the y intercept of 4x  - 6  =   -6

And the y intercept  of  -2x + 12  = 12

 

So....the length of the base of this triangle  =  12 - (-6)   = 18

 

So....the area of the tiriangle is  (1/2) (base length) (height)  =  (1/2)(18)(3)   = 27  units^2

 

Here's a pic :

 

https://www.desmos.com/calculator/9svh83h2ij

 

cool cool cool

CPhill  Jun 25, 2018

37 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.