+0

# What is the area in square units of the quadrilateral XYZW shown below

0
190
2

What is the area in square units of the quadrilateral XYZW shown below May 20, 2020

#1
0

Divide the quadrilateral into two triangles by drawing YW.

Triangle(ZYW):

Area(ZYW)  =  ½·32·24  =  __________

Since triangle(ZYW) is a right triangle, we can find YW by the Pythagorean Theorem:

YW2  =  322  +  242   --->   YW  =  40

Triangle(XYW:

We know the values of the three sides, so we can use Heron's formula to find the area.

s  =  (a + b + c) / 2   --->   s  =  (32 + 24 + 40) / 2  =  48

Area  =  sqrt[ s · (s - a) · (s - b) · (s - c) ]

= sqrt[ 48 · (48 - 32) · (48 - 24) · (48 - 40) ]  =  ____________

The area of the quadrilateral will be these two areas added together.

May 20, 2020
#2
0

Your concept is good, but the numbers are wrong Triangle XWY side lengths are  104, 96, and 40

Semiperimeter        s = (104+96+40) /2 = 120

Area                A = sqrt[ s(s-a)(s-b)(s-c)]

A = sqrt[120(120-104)(120-96)(120-40)]

Guest May 21, 2020