+0  
 
0
388
6
avatar

what is the binary representation of 2015?

Guest May 15, 2015

Best Answer 

 #5
avatar+18712 
+10

what is the binary representation of 2015 ?

$$\begin{array}{rcrr}
& & \rm{q o u t i e n t} & \rm{r e m a i n d e r} \\
2015 & : 2 = & 1007 & 1 \\
1007 & : 2 = & 503 & 1 \\
503 & : 2 = & 251 & 1 \\
251 & : 2 = & 125 & 1 \\
125 & : 2 = & 62 & 1 \\
62 & : 2 = & 31 & 0 \\
31 & : 2 = & 15 & 1 \\
15 & : 2 = & 7 & 1 \\
7 & : 2 = & 3 & 1 \\
3 & : 2 = & 1 & 1 \\
1 & : 2 = & 0 & \textcolor[rgb]{1,0,0}{1} \\
\end{array}$$

 

$$2015_2~=~\textcolor[rgb]{1,0,0}{1}~1~1~1~1~0~1~1~1~1~1$$

heureka  May 15, 2015
Sort: 

6+0 Answers

 #1
avatar+1794 
+5

2015 in binary is 11111011111

 

I do not know of an easy way to explain why 2015 in binary is 11111011111; however, I found a video that can explain it way better than I can.  Here is the web address:  https://www.khanacademy.org/math/pre-algebra/applying-math-reasoning-topic/alternate-number-bases/v/number-systems-introduction

gibsonj338  May 15, 2015
 #2
avatar+78618 
+5

201510  = 111110111112

 

CPhill  May 15, 2015
 #3
avatar+26328 
+10

Here's a detailed breakdown of the steps needed to turn 2015 decimal into binary:

 binary 1

 binary 2

.

Alan  May 15, 2015
 #4
avatar+91001 
+10

I am going to say the same as Alan and the video clip  LOL

1024 is the biggest power of 2 that goes into 2015, so I will start there 

 

2015

= 1024 with 991 remaining

=1024+512+479 remaining

=1024+512+256+223 remaining

=1024+512+256+128+95remaining

=1028+512+256+128+64+31remaining

=1028+512+256+128+64+16+15remaining

=1028+512+256+128+64+16+8+7remaining

=1028+512+256+128+64+16+8+4+3remaining

=1028+512+256+128+64+16+8+4+2+1

 

$$\\=2^{10}+2^9+2^8+2^7+2^6\qquad+2^4+2^3+2^2+2^1+2^0\\
=11111011111$$

 

Of course you could just use this converter

http://www.binaryhexconverter.com/decimal-to-binary-converter        

Melody  May 15, 2015
 #5
avatar+18712 
+10
Best Answer

what is the binary representation of 2015 ?

$$\begin{array}{rcrr}
& & \rm{q o u t i e n t} & \rm{r e m a i n d e r} \\
2015 & : 2 = & 1007 & 1 \\
1007 & : 2 = & 503 & 1 \\
503 & : 2 = & 251 & 1 \\
251 & : 2 = & 125 & 1 \\
125 & : 2 = & 62 & 1 \\
62 & : 2 = & 31 & 0 \\
31 & : 2 = & 15 & 1 \\
15 & : 2 = & 7 & 1 \\
7 & : 2 = & 3 & 1 \\
3 & : 2 = & 1 & 1 \\
1 & : 2 = & 0 & \textcolor[rgb]{1,0,0}{1} \\
\end{array}$$

 

$$2015_2~=~\textcolor[rgb]{1,0,0}{1}~1~1~1~1~0~1~1~1~1~1$$

heureka  May 15, 2015
 #6
avatar+91001 
+5

I would not have thought to do it your way Heureka but I really like your approach.

 

I have put this thread in the "Great answers to Learn from" sticky thread.     

Melody  May 26, 2015

11 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details