+0  
 
0
824
4
avatar

What is the conic for 4x^2-8x+144y+36y^2+4?

 May 1, 2014

Best Answer 

 #1
avatar+130511 
+5

What is the conic for 4x^2-8x+144y+36y^2+4?

---------------------------------------------------------------------------------------------------------------------------

We can write this as:

4x^2-8x+144y+36y^2  = -4          Dividing through by 4, we have

x^2 - 2x + 9y^2 + 36y = -1          Completing the suare on x and y, we have

(x^2 - 2x +1) + 9(y^2 + 4y +4) = -1  + 1 +36    Factoring, we have

(x - 1)^2   +9(y + 2)^2   =   36     Dividing though by 36, we have

[(x - 1)^2] / 36   + [(y + 2)^2] / 4   =   1

So we have an ellipse centered at (1, -2)  with a = 6 (the semi-major axis) and b = 2 (the semi-minor axis).

 

 May 1, 2014
 #1
avatar+130511 
+5
Best Answer

What is the conic for 4x^2-8x+144y+36y^2+4?

---------------------------------------------------------------------------------------------------------------------------

We can write this as:

4x^2-8x+144y+36y^2  = -4          Dividing through by 4, we have

x^2 - 2x + 9y^2 + 36y = -1          Completing the suare on x and y, we have

(x^2 - 2x +1) + 9(y^2 + 4y +4) = -1  + 1 +36    Factoring, we have

(x - 1)^2   +9(y + 2)^2   =   36     Dividing though by 36, we have

[(x - 1)^2] / 36   + [(y + 2)^2] / 4   =   1

So we have an ellipse centered at (1, -2)  with a = 6 (the semi-major axis) and b = 2 (the semi-minor axis).

 

CPhill May 1, 2014
 #2
avatar+118723 
0

There is no equal sign ?????  CPhill has assumed it equals 0 

 May 2, 2014
 #3
avatar+130511 
0

The general equation for any conic section is

Here, we have no "xy" term  (which would indicate a "rotated conic")

 May 2, 2014
 #4
avatar+118723 
0

I'd be happy for some more thought/discussion on this one but i think I am too tired tonight.

I might think about it tomorrow. 

 May 2, 2014

0 Online Users