$${\frac{{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{9\,764.822\: \!108}}}}{\mathtt{\,\times\,}}{\mathtt{53}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{14}}}^{{\mathtt{7}}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{75}}^\circ\right)} = {\mathtt{105\,413\,665.573\: \!754\: \!867\: \!608\: \!094\: \!8}}$$
.$${\frac{{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{9\,764.822\: \!108}}}}{\mathtt{\,\times\,}}{\mathtt{53}}}{{\mathtt{7}}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{14}}}^{{\mathtt{7}}}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{75}}^\circ\right)} = {\mathtt{105\,413\,665.573\: \!754\: \!867\: \!608\: \!094\: \!8}}$$